PD - 95535

I_D

23A

International

SMPS MOSFET

V_{DSS}

150V

IRFB23N15DPbF IRFS23N15DPbF IRFSL23N15DPbF HEXFET[®] Power MOSFET

Applications

- High frequency DC-DC converters
- Lead-Free

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Test	TOR	1. Sector
TO-220AB	D ² Pak	TO-262
IRFB23N15D	IRFS23N15D	IRFSL23N15D

R_{DS(on)} max

0.090Ω

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	23	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	17	A
I _{DM}	Pulsed Drain Current ①	92	
P _D @T _A = 25°C	Power Dissipation ⑦	3.8	W
P _D @T _C = 25°C	Power Dissipation	136	
	Linear Derating Factor	0.9	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	4.1	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range	_	°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Typical SMPS Topologies

• Telecom 48V input DC-DC Active Clamp Reset Forward Converter

IRFB/IRFS/IRFSL23N15DPbF Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.18		- V/°	C Reference to 25° C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.090	Ω	$V_{GS} = 10V, I_D = 14A$ (4)
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 150V, V_{GS} = 0V$
	Brain to Couroe Estakage Current			250		$V_{DS} = 120V, V_{GS} = 0V, T_J = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 30V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

_	Parameter	Min.	Typ. Max. Uni		Units	Conditions
			Typ.	WIGA.		
9fs	Forward Transconductance	11			S	$V_{DS} = 25V, I_D = 14A$
Qg	Total Gate Charge		37	56		I _D = 14A
Q _{gs}	Gate-to-Source Charge		9.6	14	nC	$V_{DS} = 120V$
Q _{gd}	Gate-to-Drain ("Miller") Charge	— —	19	29	† I	$V_{GS} = 10V, \textcircled{9}$
t _{d(on)}	Turn-On Delay Time		10			$V_{DD} = 75V$
tr	Rise Time		32		ns	I _D = 14A
t _{d(off)}	Turn-Off Delay Time		18			$R_G = 5.1\Omega$
t _f	Fall Time		8.4		1	V _{GS} = 10V ④
Ciss	Input Capacitance		1200			$V_{GS} = 0V$
Coss	Output Capacitance		260		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		65		pF	f = 1.0MHz
Coss	Output Capacitance		1520		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance	1	120		1	$V_{GS} = 0V, V_{DS} = 120V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		210		1	$V_{GS} = 0V$, $V_{DS} = 0V$ to 120V \odot

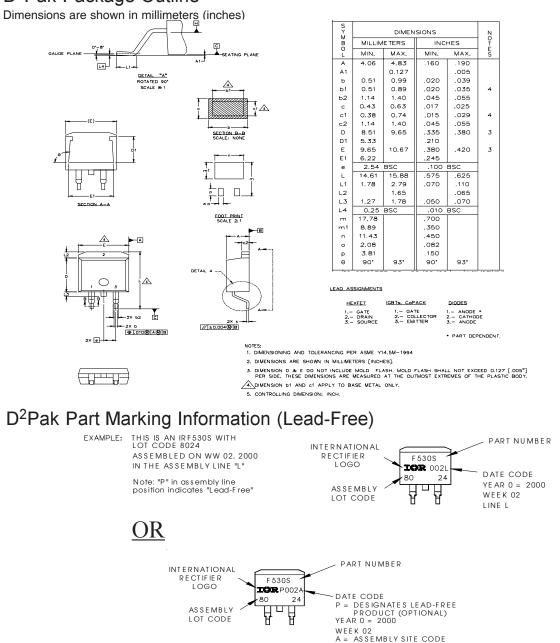
Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		260	mJ
I _{AR}	Avalanche Current [®]		14	A
E _{AR}	Repetitive Avalanche Energy®		13.6	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		1.1	
R _{0CS}	Case-to-Sink, Flat, Greased Surface ©	0.50		°C/W
R _{0JA}	Junction-to-Ambient®		62	
R _{0JA}	Junction-to-Ambient®		40	1

Diode Characteristics

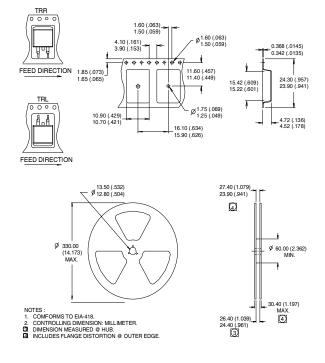

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			23	Α	MOSFET symbol	
	(Body Diode)					showing the	
I _{SM}	Pulsed Source Current			92	~~~	integral reverse	
	(Body Diode) ①			92		p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 14A, V_{GS} = 0V$ (4)	
t _{rr}	Reverse Recovery Time		150	220	ns	$T_{\rm J} = 25^{\circ} {\rm C}, \ {\rm I_F} = 14 {\rm A}$	
Q _{rr}	Reverse RecoveryCharge		0.8	1.2	μC	di/dt = 100A/µs ⊕	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					
2	1	•					

2

IRFB/IRFS/IRFSL23N15DPbF

International

D²Pak Package Outline



9

IRFB/IRFS/IRFSL23N15DPbF

International **TOR** Rectifier

D²Pak Tape & Reel Infomation

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- 0 Starting T_J = 25°C, L = 2.7mH R_G = 25 $\Omega,~I_{AS}$ = 14A.
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- S C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- 3 I_{SD} \leq 14A, di/dt \leq 240A/µs, V_{DD} \leq V_{(BR)DSS}, T_J \leq 175°C
- [®] This is only applied to TO-220AB package

⑦ This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

International